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Abstract. Random fields generation is a very important subject related with stochastic finite
element structural analysis and structural reliability. In these cases, despite of the inherent
randomness of the different variables, the designer is concerned with the spatial randomness
of material properties, geometry, applied external loads and boundary conditions in order to
improve the representation of the system characteristics. In this way, the multidimensional
non-Gaussian stochastic field generation becomes, in many cases, an appropriated tool to
obtain reliable results.
A brief review of three models for random fields generation is presented in this work. In the
three models the inverse mapping technique is used to obtain a non-Gaussian field. The
Cholesky Decomposition method has been used intensively for any field correlation.
However, through the modal decomposition method, the decreasing characteristics of the
covariance matrix eigenvalues is used, reducing significantly the computational effort and
cost to generate random fields. Finally, the spectral representation method, employing cosine
series, is very useful to obtain accurate generations of random fields due to orthogonality and
periodicity of the adopted trigonometric functions.
Numerical examples for random field generation are presented for a quantitative and
qualitative evaluation of these methods, having in sight future applications in the reliability
analysis of structural systems.
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1. INTRODUCTION

Random fields generation is a very important subject related with stochastic finite
element structural analysis and structural reliability. In these cases, despite of the inherent
randomness of the different variables, the designer is concerned with the spatial randomness



of material properties, geometry, applied external loads and boundary conditions in order to
improve the representation of the system characteristics. In the reliability analysis of three-
dimensional structures, the generation of such fields is of great importance, mainly in the
determination of geometry and loads, since one wants to work with models that best represent
the actual structures. Due to mathematical difficulties and the lack of observed data, most of
the generation techniques as well as analytic approaches for stochastic fields generation are
limited to the treatment of Gaussian fields. In some situations, the hypothesis of a stochastic
Gaussian field is not adequate due to the fact that the observed actual fields present non-
Gaussian characteristics. As exemplified in Yamazaki et al.(1988), the answer of non-linear
systems is known as non-Gaussians, even for Gaussians inputs. Also, for example, the space
variability of the Young modulus and other mechanical properties should not be considered as
Gaussians, because theoretically these properties do not assume negative values. It is more
appropriate to assume them as stochastic fields with a lognormal distribution.

1.1 Stochastic field generation

The digital generation technique of stochastic fields has been established in the last two
decades (Yamazaki et al., 1988). In general, the simulation and generation of samples of
stochastic fields can be obtained by means of: (a) spectral representation; (b) ARMA
modeling (Auto-Regressive Moving Average); and (c) covariance matrix decomposition
procedures (Yamazaki et al., 1990).

Yamazaki et al. (1990) shows that with the spectral representation, stochastic fields
can be simulated and the respective samples generated, and that, due to periodicity and
orthogonality of trigonometric functions used in the expansion, the resulting spatial statistics
are highly accurate. The digital generation of the samples can also be carried out efficiently
with the aid of the FFT (Fast Fourier Transform) algorithm. The ARMA model for stochastic
fields representation has been received considerable attention recently. Basically, the
advantage in use of the ARMA model lies in the small amount of requested memory and CPU
time for the field generation due to the recursive form involved in the formulation. As was
observed by Yamazaki et al., (1990), this method usually requests a very large number of
samples, so that the same level of statistical precision is reached, for example, with the
method of spectral representation which requests a smaller number of samples.

The covariance matrix decomposition methods, such as Cholesky decomposition and
modal decomposition, allow the generation of stochastic fields in discrete points, since their
correlation functions, or optionally their spectral density functions, are given a priori. The
great advantage of these methods lies in the fact that the generation of multivariate,
multidimensional, nonhomogencous and non-Gaussians stochastic fields is as easily as for
unidimensional ones. However, the covariance decomposition matrix method could request a
great amount of samples to achieve high accurate and stable statistics. In the following
paragraphs, a brief description in use of covariance matrix decomposition methods is given
for the generation of non-Gaussian isotropic stochastic fields.

2. NON-GAUSSIAN FIELDS GENERATION

The stochastic fields generation of non-Gaussian distributions follows the inverse
mapping technique used in random single variable generation with prescribed probability
density function. As well as in the case of random single variables, it is necessary to generate
Gaussian variables with zero mean and unit standard deviation. Then, it is correlated to this



space. The inverse mapping technique is then used to impose the correct probability density
function.

One must starts by generating uniformly distributed random numbers (
~
u ) between 0  and

1  in the same amount of the discrete field. Then, the inverse cumulative standard Gaussian
distribution function is used to obtain a standard Gaussian field (zero mean and unit standard
deviation, 

~
Z ′ ) as described by equation (1):
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where 1−Φ is the inverse cumulative standard Gaussian distribution function.

In statistical analysis of actual stochastic fields, the obtained statistics are regarding to the
actual space variable. Thus, the available data concerning to a given variable are its
distribution function type and autocorrelation matrix. If, for example, a variable has a
lognormal distribution function type, then a description in terms of its mean, standard
deviation and autocorrelation matrix ( ijXR , in the actual space) is enough.

The Nataf model may be used for the covariance matrix transformation to the non-
correlated standard Gaussian space as described in Liu et al., (1986). Basically, given the
correlation coefficient matrix in the actual space ( LMρ ), the correlation coefficient matrix in the

standard Gaussian space ( LMρ′ ) can be found through the numerical solution of the integral

given below:
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where iµ  and iσ they are the mean and standard deviation of the i th. variable and

( )ijji2 zz ρϕ ′,  is the bidimensional normal probability density function of zero means and unit

standard deviations. As the correlation coefficients are inside the integral, numerical
integration or even empirical formulae may be used to solve this kind of problem (Liu et al.,
1986).

As we do not know ijρ′ , it is necessary to transform the given autocorrelation matrix

( ijXR ) in the correlation coefficient matrix ( ijρ′ ) in order to use the Nataf model. Then,

following the definition of  the correlation coefficient matrix, and reminding that homogeneity
and a zero mean value for the stochastic field were assumed, one can write:
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where  ijXC  is the covariance matrix, ijXR  is the autocorrelation matrix and 
iXσ is the

standard deviation of i th. variable.
Once the correlation coefficient matrix (

~
ρ ) in the actual space was obtained and the

correlation coefficient matrix in standard Gaussian space (
~
ρ′ ) was calculated, two methods

for matrix decomposition could be used as indicated below:



•  Cholesky Decomposition: (Rippley , 1987)

~~~

TLL=′ρ (4)

where 
~
L  is a lower triangle matrix.

•  Modal Decomposition:

~~~~

TΘΛΘρ =′ (5)

where 
~
Λ  is the eigenvalues diagonal matrix in descending order and 

~
Θ is the eigenvectors

matrix associated to the eigenvalue-eigenvector problem:

~~~~
ΛΘΘρ =′ (6)

The following three procedures are applicable to generate prescribed standard Gaussian
correlated variables (

~
Z ):

•  Multiplying the lower triangle matrix from Cholesky decomposition by the standardized
Gaussian numbers (Cholesky decomposition method):

~~~
ZLZ ′= (7)

•  Multiplying the eigenvector matrix (or part of it) by the square root of the eigenvalues and
by the standard Gaussian numbers, as shown in equation (8) (Modal decomposition
method):

~

/
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•  Direct generation of standard Gaussian numbers by the so called spectral representation
using the eigenvector and eigenvalue matrices from the previous procedure and cosine
series (Shinozuka et al., 1985), as indicated in equation (9) (Spectral representation by
cosine series method):
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where Lλ  is i th. eigenvalue of the correlation coefficient matrix (in descending order), siΘ  is

the s th. component of the vector iΘ , Nψ  is the k th. uniformly distributed phase angle

between � and π� (
~~

Z2 ′= πψ ), 0 is the number of retained modes of the eigenvector matrix,



I1 is the number of cosine functions to be added, n  is the size of the discretized field and

N�7N �= .

Once the correlated standard Gaussian field (with zero mean and unit standard deviation)
was found, these values are mapped into the actual field space through the cumulative density
function of the random filed, originating:
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where 1
XF − and 

~
X  are the desired inverse cumulative density function and the field

respectively.

3. NUMERICAL EXAMPLE

In this example, a bidimensional lognormal stochastic field in a steel square plate with
dimensions 10,0 x 10,0 m is generated. The square plate is discretized in 100 square elements
of equal area (1,0 x 1,0 m). A sketch of the steel square plate is depicted in figure 1. The
properties of the element are considered constant along the element area and represented by
this value at its center, assuming an autocorrelation function with isotropic exponential form
as shown in equation (11):
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where 
~
ξ  is the vector of separation, which contains the center to center distances between

elements, d  is the parameter representing the correlation scale (the larger d , the more slowly
the correlation disappears as a function of the separation distance 

~
ξ ), and σ  is the stochastic

field standard deviation. In the present study the mesh discretization is assumed small enough
to represent the random variability. For a more accurate discussion on this problem see, for
example, Liu et al. (1993).

In this example, the stochastic field represents the spatial variability of the yield stress
( yf ) on the steel square plate. It is taken MPa500=µ , MPa30=σ  with lognormal

probability density function and 2d = . In order to validate the results, the covariance matrix
has been calculated from a series of 500 samples generated according to the above-mentioned
procedures, assuming isotropy and ergodicity of the generated fields. In figures 2,3,4,5 the
original autocorrealtion function, and results of the three methods are compared.



Figure 1 - Square plate discretization  in 100 equal finite elements.

Figure 2 - Original autocorrelation matrix.



Figure 3 - Autocorrelation function for Cholesky decomposition.

Figure 4 - Autocorrelation function for modal decomposition.



Figure 5 - Autocorrelation function for spectral representation.

In the example presented here, for the spectral representation method it was taken
50M = , (the first 50 modes), and 1N f =  (only one cosine is added in the series).

Comparisons could be established among the different formulations. The Cholesky
decomposition method seems to be very attractive when the stochastic field is very little
correlated, or the out of diagonal elements of the correlation coefficient matrix are very small
when compared with diagonal elements. On other hand, the modal decomposition method
seems to be more advantageous when Cholesky decomposition do not work properly
(Cholesky factorization algorithm fails), i.e., when the field is highly correlated, or the out of
diagonal elements of the correlation coefficient matrix are of the same magnitude of the
diagonal terms. Since the spectral representation method depends on the eigenvectors and
eingenvalues of correlation coefficient matrices, this method has the same advantages and
shortcoming as modal decomposition. However it must be emphasize that it is not necessary
evaluate all eigenvalues/eigenvectors. Since majority of actual fields are moderately
correlated, it is necessary only some modes for an accurate generation.

In figure 6 the corresponding generated fields are shown.



(a )

(b )

(c )

Figure 6 - Generated fields: (a)Cholesky decomposition; (b)Modal decomposition and
(c)Spectral representation by cosine series.



The relative CPU time required for each one of the different methods, for three
samples sizes, to generate an stochastic fields is shown in Table 1 below:

Table 1 - Relative CPU time for different methods and sample sizes.

4. CONCLUSION

Analyzing figures 2,3,4,5, it is possible notice the more accurate evaluation of the
autocorrelation function by the spectral representation by cosine series for small sample sizes.
More accurate results can be achieved for Modal decomposition and Cholesky decomposition
by increasing the number of sample sizes but in detriment of the required CPU time. As
indicated in Table 1, for small sample sizes, the three methods are approximately equivalent
in terms of CPU time requirements. However, for large samples size, in order to obtain more
accurate results, the advantage of Spectral representation is evident with respect to the other
methods.
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Number of
Samples

500 1000 2000

Method
Cholesky Decomp. 1.00 1.62 3.14

Modal Decomp. 1.77 2.70 4.60
Spectral Repres. 1.18 1.18 1.22


